Digital Garden
Maths
Scientific Notation

Scientific Notation

Scientific notation is a way of expressing numbers that are either very large or very small in a short and convenient form. The scientific notation takes the following form:

sβ‹…10ns \cdot 10^n

where ss is the so-called significand or mantissa and is multiplied with 10 to the power of nn, with nn being the so-called exponent. If the number is negative then a minus sign precedes the significand ss.

Example 2=2β‹…100300=300β‹…100=30β‹…101=3β‹…102βˆ’10.5=βˆ’1.5β‹…101\begin{align*} 2 &= 2 \cdot 10^0 \\ 300 &= 300 \cdot 10^0 = 30 \cdot 10^1 = 3 \cdot 10^2 \\ -10.5 &= -1.5 \cdot 10^1 \end{align*}

The exponent of 10 indicates how many places the decimal point is moved. A positive exponent indicates that the decimal point is moved to the right, while a negative exponent indicates that the decimal point is moved to the left.

Example 0.00004=0.00004β‹…100=00.0004β‹…10βˆ’1=000.004β‹…10βˆ’2=0000.04β‹…10βˆ’3=00000.4β‹…10βˆ’4=000004.β‹…10βˆ’5=4β‹…10βˆ’5\begin{align*} 0\textcolor{red}{.}00004 =& 0\textcolor{red}{.}00004 \cdot 10^0 \\ =& 00\textcolor{red}{.}0004 \cdot 10^{-1} \\ =& 000\textcolor{red}{.}004 \cdot 10^{-2} \\ =& 0000\textcolor{red}{.}04 \cdot 10^{-3} \\ =& 00000\textcolor{red}{.}4 \cdot 10^{-4} \\ =& 000004\textcolor{red}{.} \cdot 10^{-5} \\ =& 4 \cdot 10^{-5} \end{align*}

Normalized Notation

As you can see in the second example there can be ambigous representations, which is why the normalized notation was introduced. In the normalized form the exponent is chosen so that the significand is at least 1 but less than 10, so s∈[1,10)s \in [1,10).

Example 2=2β‹…100300=3β‹…102βˆ’53β€²000=βˆ’5.3β‹…1040.2=2β‹…10βˆ’1\begin{align*} 2 &= 2 \cdot 10^0 \\ 300 &= 3 \cdot 10^2 \\ -53'000 &= -5.3 \cdot 10^4 \\ 0.2 &= 2 \cdot 10^{-1} \end{align*}

The "E" Notation

Because displaying exponents like 10βˆ’510^-5 can be inconvenient to display or type on a computer or calculator, the letter "E" or "e", for "exponent", is often used to represent "s times ten raised to the power of n".

Example 0.00004=4β‹…10βˆ’5=4Eβˆ’5=4eβˆ’5300=3β‹…102=3E2=3e2\begin{align*} 0.00004 &= 4 \cdot 10^{-5} = 4E-5 = 4e-5 \\ 300 &= 3 \cdot 10^2 = 3E2 = 3e2 \end{align*}